Selecting high-quality negative samples for effectively predicting protein-RNA interactions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selecting against accidental RNA interactions

Random base-pairing interactions between messenger RNAs and noncoding RNAs can reduce translation efficiency.

متن کامل

Selecting Negative Samples for PPI Prediction Using Hierarchical Clustering Methodology

Protein-protein interactions PPIs play a crucial role in cellular processes. In the present work, a new approach is proposed to construct a PPI predictor training a support vector machine model through a mutual information filter-wrapper parallel feature selection algorithm and an iterative and hierarchical clustering to select a relevance negative training set. By means of a selected suboptimu...

متن کامل

High-throughput characterization of protein–RNA interactions

RNA-binding proteins (RBPs) are important regulators of eukaryotic gene expression. Genomes typically encode dozens to hundreds of proteins containing RNA-binding domains, which collectively recognize diverse RNA sequences and structures. Recent advances in high-throughput methods for assaying the targets of RBPs in vitro and in vivo allow large-scale derivation of RNA-binding motifs as well as...

متن کامل

Kernel methods for predicting protein-protein interactions

MOTIVATION Despite advances in high-throughput methods for discovering protein-protein interactions, the interaction networks of even well-studied model organisms are sketchy at best, highlighting the continued need for computational methods to help direct experimentalists in the search for novel interactions. RESULTS We present a kernel method for predicting protein-protein interactions usin...

متن کامل

Computational methods for predicting protein-protein interactions.

Protein-protein interactions (PPIs) play a critical role in many cellular functions. A number of experimental techniques have been applied to discover PPIs; however, these techniques are expensive in terms of time, money, and expertise. There are also large discrepancies between the PPI data collected by the same or different techniques in the same organism. We therefore turn to computational t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMC Systems Biology

سال: 2017

ISSN: 1752-0509

DOI: 10.1186/s12918-017-0390-8